Anomalous magnetism of uranium(IV)-oxo and -imido complexes reveals unusual doubly degenerate electronic ground states

نویسندگان

چکیده

•Uranium(IV)-imido/-oxo complexes have been made by a disproportionation method•The imido and oxo show anomalously high low-temperature magnetic moments•The strong ligands generate pseudosymmetric electronic structures•The resulting pseudo-doublet ground states explain the anomalous magnetism Uranium (U) its derivatives play key roles in nuclear technologies; therefore, it is of interest to study U-complexes. Variable-temperature normally enables clear assignment U-oxidation states, as each state has typical profile. However, growing number 5f2 U(IV) exhibit data. We report two that also data find this because pseudo-doublet, not usual singlet, spin-orbit states. This occurs structures, showing traditional crystal field arguments apply surprisingly well uranium. Thus, existing new U(IV)-complexes with such behavior likely doublet rather than singlet Studies, one, will assist studying U-electronic structure thus compound assignments, principle, approach can be applied any axially symmetric actinide complex. A fundamental part characterizing metal complex understanding state, for which magnetometry provides insight. Most uranium(IV) moments tending zero, consistent non-degenerate state. there ≥1 μB, suggesting degenerate but implications origins unclear. uranium(IV)-oxo -imido (ca. 1.5–1.6 μB) they near-doubly determine results from point-charge-like donor properties anions generating structures are useful uranium(IV). suggests significant might benefit close re-evaluation nature their The coordinated formal oxidation uranium modulate effects inter-electronic repulsion (IER), coupling (SOC), (CF), together complex.1Liddle S.T. renaissance non-aqueous chemistry.Angew. Chem. Int. Ed. Engl. 2015; 54: 8604-8641Crossref PubMed Scopus (282) Google Scholar Some or all these comparable magnitudes where early actinides concerned. Therefore, more anywhere else periodic table, intrinsically very challenging study, yet, fundamentally important understand dictates turn intimately connected bonding, reactivity, physicochemical molecule. As central element civil energy production,2Kaltsoyannis N. Liddle Catalyst: power 21st century.Chem. 2016; 1: 659-662Abstract Full Text PDF (24) Scholar, 3Taylor R. Reaction: role chemists.Chem. 662-663Abstract (18) 4Ion S. recycling generation IV systems.Chem. 663-665Abstract (9) resolving long-standing challenge waste could, future, utilize selective extraction methods exploit better covalency differences uranium-ligand underlying structure. One most valuable informative paramagnetic open-shell variable-temperature magnetometry, give direct insight into free ion, 3H4 Russell-Saunders formalism, predicted moment 3.58 μB. due CF molecular complexes, often around 2.0–2.5 μB at 298 K usually decreases smoothly toward ∼0.3–0.5 2 K.5Day J.P. Venanzi L.M. octahedral uranium(IV).J. Soc. A. 1966; 1966: 197-200Crossref 6Castro-Rodríguez I. Meyer K. Small molecule activation coordination complexes: control reactivity via architecture.Chem. Commun. (Camb). 2006; : 1353-1368Crossref (195) 7Gardner B.M. King D.M. Tuna F. Wooles A.J. Chilton N.F. Assessing interactions diuranium-μ-chalcogenide triamidoamine UIV-E-UIV cores (E = S, Se, Te): determining presence absence actinide-actinide exchange.Chem. Sci. 2017; 8: 6207-6217Crossref 8Rosenzweig M.W. Heinemann F.W. Maron L. Molecular eight-coordinate bipyridine rare example Bipy2- ligand U4+ ion.Inorg. 56: 2792-2800Crossref (11) decrease depopulation excited (A) appreciable temperature-independent paramagnetism (TIP)7Gardner Scholar,9Gendron Le Guennic B. Autschbach J. Magnetic Ar3UIV-L with, Ar C5(CH3)4H- C5H5- L CH3, NO, Cl.Inorg. 2014; 53: 13174-13187Crossref (26) Scholar; note an S 0 spin-singlet singly state—though examples do exist, e.g., [(C5Me4H)3UNO].9Gendron Scholar,10Siladke N.A. Meihaus K.R. Ziller J.W. Fang M. Furche Long J.R. Evans W.J. Synthesis, structure, f nitrosyl complex, (C5Me4H)3UNO.J. Am. 2012; 134: 1243-1249Crossref (61) For Oh-symmetric [UX6]2−, known5Day 11Gorller-Walrand C. Binnemans Handbook on Physics Chemistry Rare Earths. Vol. 23. Elsevier, 1996Google 12Hutchison C.A. Candela G.A. susceptibilities ions cubic crystalline fields.J. Phys. 1957; 27: 707-710Crossref (58) J 4 multiplet splits A1, E, T1, T2 irreducible representations Oh symmetry,11Gorller-Walrand A1 lowest energy.12Hutchison Scholar,13Su Dau P.D. Liu H.T. Huang D.L. Wei Schwarz W.H.E. Li Wang L.S. Photoelectron spectroscopy theoretical studies gaseous hexachlorides different states: UCl6q- (q 0–2).J. 142: 134308Crossref (25) diamagnetic composed approximately 58% mJ 0, 21% −4, +4,12 itself equal contributions ±4 cancel out other; mapped spin orbital calculated using Clebsch-Gordan coefficients14Sakurai J.J. Tuan S.F. Modern Quantum Mechanics.Rev. Edition. Addison-Wesley Publishing, 1994Google measured experimentally.15Pedersen K.S. Rogalev Wilhelm Aravena D. Amoza et al.[UF6 ]2-: hexafluorido actinide(IV) compensating moments.Angew. 2019; 58: 15650-15654Crossref (3) On other hand, compounds symmetry may near-zero low temperatures, signifying (E). example, uranocene, [U(η8 -C8H8)2],16Streitwieser Mueller-Westerhoff U. Bis(cyclooctatetraenyl)uranium (uranocene). class sandwich atomic orbitals.J. 1968; 90: 7364Crossref (301) ∼2.6 300 K17Edelstein Lamar G.N. Mares Streitwieser Proton resonance shifts (bis(cyclooctatetraenyl)uranium(IV).Chem. Lett. 1971; 399-402Crossref (47) 1.35 K18Karraker D.G. Stone J.A. Jones E.R. Edelstein Bis(cyclooctatetraenyl)neptunium(IV) bis(cyclooctatetraenyl)plutonium(IV).J. 1970; 92: 4841-4845Crossref (130) Scholar: case, D8h solid-state E1, E2, E3, B1 + B2 representations, E3 (mJ ±3) state.19Chang A.H.H. Pitzer R.M. Electronic spectra uranocene.J. 1989; 111: 2500-2507Crossref (165) 20Hayes R.G. Elementary calculation U(C8H8)2 application U(C8H8)2, Np(C8H8)2, Pu(C8H8)2.J. 1972; 94: 8688-8691Crossref (64) 21Warren K.D. Ligand theory complexes. fx configurations.Inorg. 1975; 14: 3095-3103Crossref (34) Outside “simple” high-symmetry sufficiently low-symmetry geometries state5Day Scholar,7Gardner Scholar,22Newell B.S. Rappé A.K. Shores M.P. Experimental evidence exchange di- trinuclear ethynylbenzene complexes.Inorg. 2010; 49: 1595-1606Crossref (56) unpaired electrons non-Kramers ion; hence, no requirement degeneracies after action CF, effect 5f-orbitals significant. now formally innocent (<2 K) quite (≥1 μB),23Fortier Melot B.C. Wu G. Hayton T.W. Homoleptic alkyl synthesis characterization.J. 2009; 131: 15512-15521Crossref (65) 24Chadwick F.M. Ashley Wildgoose Goicoechea J.M. Randall O’Hare Bis(permethylpentalene)uranium.Dalton Trans. 39: 6789-6793Crossref (20) 25Seaman L.A. Fortier Comparison redox chemistry primary secondary amides U(IV): isolation U(VI) bis(imido) homoleptic amido complex.Inorg. 2011; 50: 636-646Crossref (36) 26Fortier Brown J.L. Kaltsoyannis UV(O)[N(SiMe3)2]3.Inorg. 51: 1625-1633Crossref (91) 27Brown Lewis R.A. complete family terminal chalcogenides, [U(E)(N{SiMe3}2)3]- O, Te).J. 15468-15475Crossref (89) 28Patel McInnes E.J.L. W. Blake An Actinide zintl cluster: tris(triamidouranium)μ3-η2:η2:η2-heptaphosphanortricyclane diverse synthetic utility.Angew. 2013; 52: 13334-13337Crossref (43) 29Lewis Williams U.J. Carroll P.J. Schelter E.J. Tetrakis(bis(trimethylsilyl)amido)uranium(IV): reactivity.Inorg. 7326-7328Crossref (40) 30Gardner Balázs Scheer McMaster Triamidoamine-uranium(IV)-stabilized parent phosphide phosphinidene complexes.Angew. 4484-4488Crossref (97) 31King Synthesis characterization f-block [U=NH] complex: masked nitride.J. 136: 5619-5622Crossref (93) 32Halter D.P. La Pierre H.S. Uranium(IV) halide (F-, Cl-, Br-, I-) monoarene 8418-8424Crossref (38) 33Gardner Triamidoamine uranium(IV)-arsenic containing one-, two- threefold U-As bonding interactions.Nat. 7: 582-590Crossref (84) 34Rookes T.M. Gardner Gregson Crystalline diuranium phosphinidiide μ-phosphido asymmetric UPU cores.Angew. 10495-10500Crossref (46) 35Gregson Lu E. Mills Hennig Scheinost A.C. al.The inverse-trans-influence tetravalent lanthanide bis(carbene) complexes.Nat. 14137Crossref (92) 36Lu Boronski J.T. Silyl-phosphino-carbene uranium(IV).Angew. 2018; 57: 5506-5511Crossref (29) 37Lu Cobb short uranium(IV)-rhodium(I) bond net double-dative character.Angew. 6587-6591Crossref (37) 38Boronski Doyle L.R. Seed f-element half-sandwich tetrasilylcyclobutadienyl-uranium(IV)-tris(tetrahydroborate) anion pianostool complex.Angew. 2020; 59: 295-299Crossref (19) 39Seed Sharpe H.R. Futcher H.J. Nature arsonium-ylide Ph3As=CH2 arsonium-carbene 15870-15874Crossref (12) something differentiating Empirically, tend observed monoanionic ligands, regardless (pseudo)symmetry, higher increasingly temperatures when stronger tri-anionic present, implying (pseudo)doublet (E) state.22Newell increasing threshold strength arguments, thus, switching invoked. Previously, we reported N-heterocyclic olefin H2C=C(NMeCH)2 reacts [UIII(N″)3] (N″ N(SiMe3)2) produce mesoionic carbene [U(N″)3{CN(Me)C(Me)N(Me)CH}] exhibits UIII→C 1-electron back-bond interaction.40Seed Rare-earth- uranium-mesoionic carbenes: derived olefin.Angew. 11534-11538Crossref (28) Seeking widen targeted uranium(V) derivatives. instead found basic become complicating factor, promoting cyclometallation reactions, unusually moments, C1 symmetry, investigated address permitted us unambiguously verify pseudo-C3-symmetric axial dictate enough Treatment pre-prepared [UV(O)(N″)3] N(SiMe3)2, 1)26Fortier situ-prepared [UV(NSiMe3)(N″)3] (2, N3SiMe3) half equivalent either diethyl ether hexane, produces, work-up recrystallization, brown needles [UIV(O)(N″)3][(Me)C(NMeCH)2] (4) [UIV(NSiMe3)(N″)3][(Me)C(NMeCH)2] (5), respectively, Scheme 1. yields 5 both 13%, decompose solution affording HN(SiMe3)2 unidentified, intractable by-products formation reactions uranium(VI)-cyclometallate concomitantly form [UVI(O)(N″)2{N(SiMe3)(SiMe2CH2)}] (6)41Fortier Probing complex.J. 133: 14224-14227Crossref (82) [UVI(NSiMe3)(N″)2{N(SiMe3)(SiMe2CH2)}] (7) 5, limiting maximum yield case 50%. When 1 treated one 3, uranium(V)-cyclometallate [UV(O)(N″)2{N(SiMe3)(SiMe2CH2)}][(Me)C(NMeCH)2] (8) [UV(NSiMe3)(N″)2{N(SiMe3)(SiMe2CH2)}][(Me)C(NMeCH)2] (9), formed quantitatively (see supplemental information). Complexes 8 9 left prolonged periods, decomposition 60 15 min, respectively. if quickly 2, then 1:1 mixtures disproportionated 4:6 5:7 analogously discussed above. between 3 clearly 5:7, result cyclometallation. provide mechanism reaction, since cyclometallated situation, only addition further (which essentially renders 1/2:3 ratio 1:0.5) does occur. accounted 3-promoting C–H H-abstraction, fact extra cyclometallate destabilizes 9, evidenced otherwise rapid decomposition, uranium(VI) favorable formulation expense anionic reduction uranium-oxo components 5. Certainly, D-incorporation conducted D6-benzene this, [UV(O)(N″)2{N(SiMe3)(SiMe2CH2)}][MePPh3],41Fortier counter-cation, known easily oxidized (E1/2 –0.85 V versus [Cp2Fe]0/+). Once isolated, poorly soluble aromatic solvents, ethers, NMR spectroscopic (Figures S1–S4) formulations deuterated solvent (benzene). six trimethylsilyl groups resonate per 1H spectrum, indicating species timescale. shifted upfield relative agreement increased electron density centers. group spectrum –12.55 ppm, [M=NSiMe3] reported, comparison made; however, 29Si weak resonances –37.74 –90.74/–131.19 within range chemical complexes.42Windorff C.J. silicon-containing complexes.Organometallics. 33: 3786-3791Crossref (35) 6 were identified S5–S7) reaction compared published Complex was reference 8, 7 could spectroscopically identified, stabilize oxo, fleeting existence seems assured, given parallels systems five partners identified. IR S8 S9) UV-vis-NIR S12–S15) recorded. Unfortunately, linkages anticipated fall region 800–1,000 cm−1, shown contain absorptions silyl-amide analysis.26Fortier dominated charge transfer bands UV 20,000 cm−1. Across 20,000–5,000 cm−1 multiple (ε <80 M−1 cm−1) characteristic Laporte forbidden f-f transitions ions, accordance pale color complexes.1Liddle Scholar,6Castro-Rodríguez Scholar,43Mills Moro Van Slageren delocalized arene-bridged single-molecule magnet.Nat. 3: 454-460Crossref (238) In order confirm determined, Figure gross terms, similar, separated ion pair four-coordinate ions. geometry about trigonal monopyramidal, average O-U-Namide angle 96.8(3)° Namide-U-Namide 118.6(3)°, lies 0.279(4) Å above plane defined three Namide contrast, exhibited pseudo-tetrahedral uranium, Nimido-U-Namide 102.39(2)° 115.53(2)°. largely mirrored those pentavalent U-Namide distances spanned across ranges 2.346(7)–2.351(7) 2.359(4)–2.368(4) Å, comparison, [2.235(1)–2.244(2) Å]26Fortier [av. 2.295(10) Å]44Zalkin Brennan J.G. Andersen Tris[bis(trimethylsilyl)amido](trimethylsilylimido)uranium(V).Acta Crystallogr. C Cryst. Struct. 1988; 44: 1553-1554Crossref significantly shorter. 4, U–O distance longer [1.882(6) 1.817(1) respectively] U-Nimido [1.985(4) 1.910(16) respectively]. More widely, [U{OK(18-crown-6)}(N″)3] [1.890(5) Å]45Smiles D.E. bonds cleavage trityl protecting group.J. 96-99Crossref length [U(NDipp)Cl2(tBu2bpy)(THF)2]46Jilek R.E. Tomson N.C. Shook R.L. Scott B.L. Boncella Preparation versatile U(NAr)Cl2(R2bpy)2 (R Me, (t)Bu) U(NAr)Cl2(tppo)3.Inorg. 9818-9826Crossref [K][U(=NCPh3){N(SiMe3)2}3]47Mullane K.C. Yin H. Anomalous one-electron processes nitrogen bonds.Inorg. 9129-9139Crossref (42) [1.981(2) 1.9926(14) These structural features support Powdered samples immobilized eicosane studied superconducting quantum interference device (SQUID) S10, S11). 2.88 3.01 K, values lower uncommon, maximal 2.54 substantially (1.59 2.04 K). decreased slowly, reaching 2.36 2.30 20 rapidly 1.54 1.46 2. fit “classical” uranium(IV),1Liddle chemistry.Ang

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxo and imido/imido exchange and C–H activation reactions based on pentamethylcylopentadienyl imido tantalum complexes

Reactions of [TaCp*Cl4] with two, three and four equivalents of LiNH Bu give the haloand amido-imido complexes [TaCp*Cl2(N Bu)] (1a), [TaCp*Cl(NBu)(NHBu)] (2) and [TaCp*(NBu)(NHBu)2] (3), respectively. The related complex [TaCp*Cl2{N(2,6-Me2C6H3)}] (1b) is prepared by a similar reaction using two equivalents of Li[NH(2,6-Me2C6H3)]. Complex 3 can be transformed into 2 and further into 1a by reac...

متن کامل

Degenerate and Non - Degenerate Ground States for Schrdinger Operators

In the study of quantum mechanical energy operators, particular attention is paid to the question of whether the bottom of the spectrum is an eigenvalue and whether that eigenvalue is simple. The corresponding eigenvector is usually called the gound state. Throughout our discussion we will say that a self-adjoint operator H has no ground state degeneracy when either E inf spectrum H is not an e...

متن کامل

Terminal imido rhodium complexes.

Compounds of the late transition metals with M=X multiple bonds (X=CR2, NR, O) represent a synthetic challenge, partly overcome by preparative chemists, but with noticeable gaps in the second- and third-row elements. For example, there are no isolated examples of terminal imido rhodium complexes known to date. Described herein is the isolation, characterization, and some preliminary reactivity ...

متن کامل

Bipyridine Adducts of Molybdenum Imido Alkylidene and Imido Alkylidyne Complexes.

Seven bipyridine adducts of molybdenum imido alkylidene bispyrrolide complexes of the type Mo(NR)(CHCMe(2)R')(Pyr)(2)(bipy) (1a-1g; R = 2,6-i-Pr(2)C(6)H(3) (Ar), adamantyl (Ad), 2,6-Me(2)C(6)H(3) (Ar'), 2-i-PrC(6)H(4) (Ar(iPr)), 2-ClC(6)H(4) (Ar(Cl)), 2-t-BuC(6)H(4) (Ar(t) (Bu)), and 2-MesitylC(6)H(4) (Ar(M)), respectively; R' = Me, Ph) have been prepared using three different methods. Up to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2021

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2021.05.001